St. Marys - Bowmanville Cement Plant PM Monitoring Program

Rotek Environmental Inc.

© TemplatesWise.com

What is Particulate Matter

ROTEK

- Particulate matter (PM) consists of airborne solid particles and liquid droplets suspended in air.
- Particulate matter includes aerosols, smoke, fumes, dust, fly ash and pollen.
- Particulate matter is classified according to its size, since different health effects are associated with particles of different diameters.
- The Ministry of the Environment, Conservation and Parks (MECP) identifies the following different sizes of PM:
 - Total Suspended Particulate (TSP) airborne particulate matter with an upper size limit of approximately 44 micro metre (μm).
 - \circ Particulate Matter < 10 microns (PM₁₀) airborne particulate matter with a diameter less than 10 μm.
 - $\circ~$ Particulate Matter < 2.5 microns (PM_{2.5}) airborne particulate matter with a diameter less than 2.5 $\mu m.$

Particulate Matter Size

ROTEK

PM₁₀ particles can stay suspended in the air for minutes or hours while PM_{25} particles can stay suspended for days or weeks.

- ► PM₁₀ Inhalable Particulate
- deposited in the upper respiratory tract.
- PM_{2.5} Respirable Particulate capable of penetrating the alveolar region of the lung.

SMC PM Monitoring Network Overview

SMC PM Monitoring Network Overview

SMC Continuous PM₁₀ Monitoring Program

- SMC's air quality program monitors and reports accurate real-time continuous measurement of ambient PM₁₀ at various sites located around the St. Marys Bowmanville Cement Plant facility. The data generated are used to measure compliance with provincial standards.
- PM₁₀ is continuously monitored utilizing Met One BAM 1020 continuous particulate monitors.
- The BAM 1020 automatically measures and records airborne particulate concentration levels in micrograms per cubic meter using the industry-proven principle of beta ray attenuation.
- The Met One BAM 1020 has longstanding U.S. Environmental Protection Agency (EPA) designation as a Federal Equivalent Method (FEM) for continuous PM₁₀ particulate monitoring.

Met One BAM 1020 Continuous PM₁₀ Monitor

PM₁₀ Size Selective Sample Inlet

ROTEK

 \rightarrow The MECP AAQC is 50 µg/m³ for a 24 Hr running average.

Non-Continuous PM₁₀ High Volume Air Sampler

PM₁₀ Size Selective Sample Inlet

ROTEK

An air sampler draws ambient air at a constant flow rate into a specially shaped inlet where the suspended particulate matter is separated by inertia into one or more size fractions within the PM₁₀ size range.

→ The MECP AAQC is 50 μ g/m³ for a 24 Hr clock average (midnight to midnight).

Non-Continuous Total Dustfall Sampler

Settleable Particulate

ROTEK

Dustfall collection is a passive sampling method that provides a measure of particulate deposition.

Containers (Dustfall Jars) of a standard size and shape are prepared and sealed in a laboratory and then opened and set up at appropriately chosen sites so that particulate matter can settle into them for periods of about 30 days.

The masses of the water-soluble and insoluble components of the material collected are determined. The result totals are reported as grams per square metre per 30 days (g/m2/30).

 \rightarrow The MECP AAQC is 7 g/cm²/30 days.

Respirable Particulate - PM_{2.5}

- Fine particulate matter, a regional pollutant denoted as PM_{2.5}, is approximately 30 times smaller than the average diameter of a human hair.
- Fine particulate matter is one of the major components of smog.
- Fine particulate matter can have various negative health effects especially on the respiratory and cardiovascular systems.
- Major components of PM_{2.5} in Ontario are typically nitrates, sulphates, organic matter and particulate bound water.
- Fine particulate matter may be emitted directly into the atmosphere as a by-product of fuel combustion or it may be formed indirectly in the atmosphere through a series of complex chemical reactions.

Respirable Particulate - PM_{2.5}

ROTEK

- The estimates for Ontario PM_{2.5} emissions from point, area and transportation sources (excluding emissions from open and natural sources) indicate that residential fuel combustion accounted for 56% of PM_{2.5} emissions.
- The Cement and concrete industry accounts for approximately 4% of Ontario PM_{2.5} emissions.

Note: Excludes emissions from open and natural sources.

Source: Ministry of the Environment, Conservation and Parks, Air Quality in Ontario, 2016 Report.

Point Source Contribution PM_{2.5}

Below are examples of $PM_{2.5}$ point source contributions from 2 industrial sources, one being St. Marys PM_{10} monitoring station SMC1 and the second an open pit mining operation in Labrador.

Regional PM_{2.5} Events

PM_{2.5} events are not typically primary or point source related but tend to be regional in nature as illustrated below.

Primary PM is emitted directly into the atmosphere from a source, such as a smokestack or exhaust pipe, or from wind-blown soils or vehicle traffic on a dirt road.

The secondary PM below is formed indirectly in the atmosphere through a series of complex chemical and physical reactions involving gases such as Sulphur oxides (SOx) and nitrogen oxides (NOx).

PM₁₀ Exceedance Event June 30th - July 4th 2013

ROTEK

SMC1 and SMC2 records PM₁₀ exceedances June / July, 2013.

Winds out of the NE, 'upwind' of SMC plant operations.

News reports of northern Quebec forest fires impacting Ontario air quality.

PM₁₀ data from a Napanee monitor confirms Provincial wide impact on air quality

PM_{2.5} data from the Oshawa AQHI station indicates a dominant size fraction in the PM_{2.5} range.

MECP PM_{2.5} Standards

A value of 28 μ g/m³ (24 Hr calendar day) is the Canadian Ambient Air Quality Standard (CAAQS) for PM_{2.5}, developed jointly by the Federal government and the Provinces, including Ontario, as a step towards the long-term goal of minimizing the risk that fine particles impose on human health and the environment.

Achievement of the PM_{2.5} CAAQS in various airsheds is to be based on the 24 hour 98th percentile ambient measurement annually, averaged over three consecutive years.

The annual $PM_{2.5}$ AAQC is 10 μ g/m³ based on the 3 year average of the annual average concentrations. An annual standard helps protect human health from long term or chronic exposure to fine particulate.

Pollutant	Averaging Time	Standards		Metric
		2015	2020	Methe
PM _{2.5}	24 Hr (Calendar Day)	28 μg/m³	27 μg/m³	The 3-year average of the annual 98 th percentile of the daily 24-hour average concentrations.
PM _{2.5}	Annual (Calendar Year)	10.0 μg/m³	8.8 μg/m³	The 3-year average of the annual average concentrations.

Ministry Audit Program

- The MECP audits the St. Marys PM monitoring network quarterly.
- The audit program provides an indication of the effectiveness of quality control activities used by station operators and data management staff.
- Performance audits are independent evaluations of data quality produced by the PM monitors.
- Ministry staff document their findings in audit reports.
- Rotek has been involved in the service and maintenance of the SMC PM monitoring network since 2011 and have a 100% audit success rate.